

RHIC/AGS Annual Users' Meeting 2020

Relativistic Hydrodynamics at Large Baryon Densities

Modeling the transport of coupled charges

Jan Fotakis

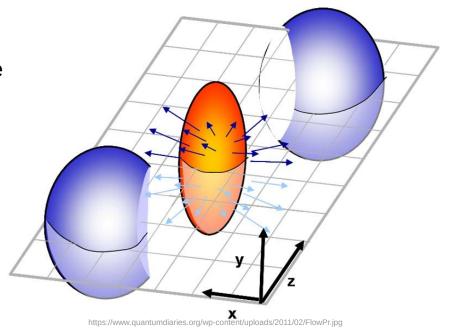
University of Frankfurt

Harri Niemi, Etele Molnár, Gabriel Denicol, Moritz Greif, Carsten Greiner

Traditionally:

Viewed as 'blob' of <u>one type of matter</u> (single component) with <u>one velocity field</u>

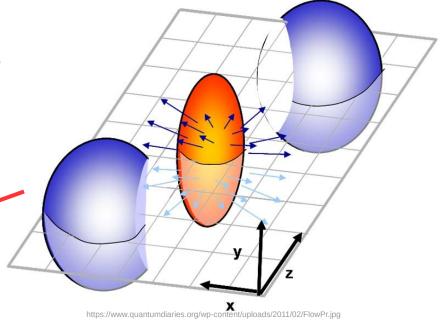
- usually 'blob' of energy without charge



Traditionally:

Viewed as 'blob' of <u>one type of matter</u> (single component) with <u>one velocity field</u>

- usually 'blob' of energy without charge



In general:

Consists of <u>multiple components</u> with <u>various</u> <u>properties</u> with <u>multiple velocity fields</u>

- with **multiple conserved quantities** (e.g. energy, electric charge, baryon number, strangeness, ...)
- mixed chemistry → **coupled charge currents!**

<u>Hydrodynamics:</u> macroscopic effective field theory of thermal matter close to local equilibrium

Conservation of Energy and Momentum:

$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P_0 + \Pi)\Delta^{\mu\nu} + \pi^{\mu\nu}$$

$$\partial_{\mu}T^{\mu\nu} = 0$$

Here: single-fluid approximation $u_i^\mu \approx u^\mu$

Conservation of charge:

$$N_q^{\mu} = n_q u^{\mu} + V_q^{\mu}$$

$$\partial_{\mu}N_{q}^{\mu}=0$$

<u>Hydrodynamics:</u> macroscopic effective field theory of thermal matter close to local equilibrium

Conservation of Energy and Momentum:

$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P_0 + \Pi)\Delta^{\mu\nu} + \pi^{\mu\nu}$$

$$\partial_{\mu}T^{\mu\nu} = 0$$

Here: single-fluid approximation $u_i^\mu \approx u^\mu$

Conservation of charge:

q-th conserved charge (eg. B,Q,S)

$$N^{\mu}_{\overline{q}} = n_{\overline{q}}u^{\mu} + V^{\mu}_{\overline{q}}$$

$$\partial_{\mu}N_{\overline{q}}^{\mu} = 0$$

<u>Hydrodynamics:</u> macroscopic effective field theory of thermal matter close to local equilibrium

Conservation of Energy and Momentum:

$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P_0 + \Pi)\Delta^{\mu\nu} + \pi^{\mu\nu}$$

$$\partial_{\mu}T^{\mu\nu}=0$$

4 equations

Conservation of charge:

q-th conserved charge (eg. B,Q,S)

$$N^{\mu}_{\overline{q}} = n_{\overline{q}}u^{\mu} + V^{\mu}_{\overline{q}}$$

$$\partial_{\mu}N^{\mu}_{\overline{q}} = 0$$

 $N_{
m ch}$ equations

 $10 + 4N_{\rm ch}$ degrees of freedom, $4 + N_{\rm ch}$ equations \rightarrow $6 + 3N_{\rm ch}$ unknowns

<u>Hydrodynamics:</u> macroscopic effective field theory of thermal matter close to local equilibrium

Conservation of Energy and Momentum:

$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P_0 + \Pi)\Delta^{\mu\nu} + \pi^{\mu\nu}$$

$$\partial_{\mu}T^{\mu\nu}=0$$

4 equations

Conservation of charge:

$$N_q^{\mu} = n_q u^{\mu} + \overline{V_q^{\mu}}$$

$$\partial_{\mu}N_{q}^{\mu}=0$$

 $N_{
m ch}$ equations

$$10 + 4N_{\rm ch}$$
 degrees of freedom, $4 + N_{\rm ch}$ equations \rightarrow $6 + 3N_{\rm ch}$ unknowns

What needs to be known:

- Equation of state
- Equations of motion for dissipative fields & transport coefficients
- Initial state
- Freeze-out and δf -correction

<u>Hydrodynamics:</u> macroscopic effective field theory of thermal matter close to local equilibrium

Conservation of Energy and Momentum:

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P_0 + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$$

$$\partial_{\mu}T^{\mu\nu}=0$$

4 equations

Conservation of charge:

$$N_q^{\mu} = n_q u^{\mu} + \overline{V_q^{\mu}}$$

$$\partial_{\mu}N_{q}^{\mu}=0$$

Fluid dynamics with conserved baryon number:

Denicol et al., PRC 98, 034916 (2018) Du et al., Comp. Phys. Comm. 251, 107090 (2020)

Li et al., PRC 98, 064908 (2018)

 $N_{
m ch}$ equations

 $10 + 4N_{\rm ch}$ degrees of freedom, $4 + N_{\rm ch}$ equations \rightarrow $6 + 3N_{\rm ch}$ unknowns

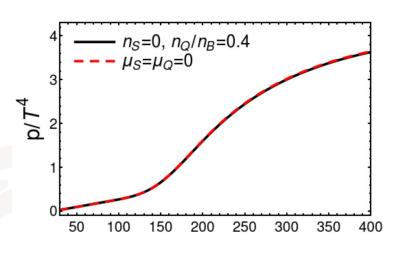
What needs to be known:

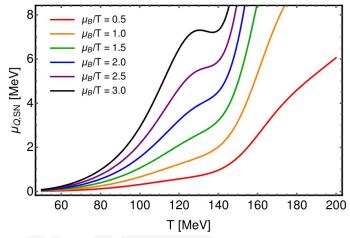
- Equation of state
- Equations of motion for dissipative fields & transport coefficients
- Initial state
- Freeze-out and δf -correction

Equation of state with multiple conserved charges

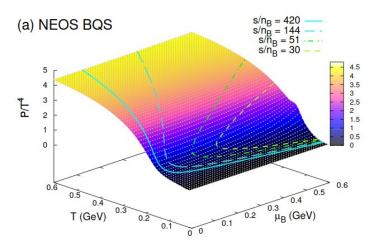
$$P_0(T) \rightarrow P_0(T, \mu_{\rm B}, \mu_{\rm Q}, \mu_{\rm S})$$

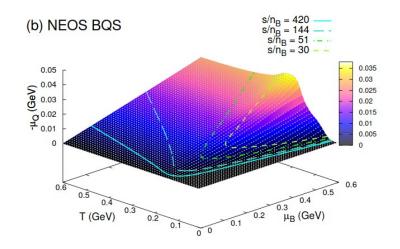
Noronha-Hostler et al., PRC 100, 064910 (2019)



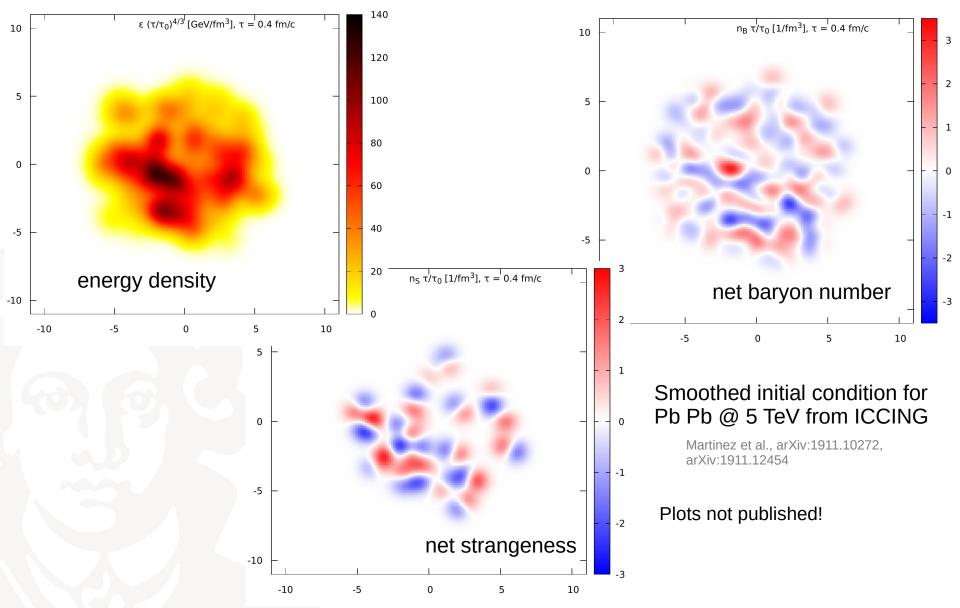


Monnai et al., PRC 100, 024907 (2019)





Initial state with multiple conserved charges



Deriving fluid dynamics from kinetic theory

Denicol et al., PRD 85, 114047 (2012)

On basis of <u>DNMR theory</u>: derivation from the Boltzmann equation

→ upcoming publication! (Fotakis, Molnár, Niemi, Denicol, Rischke, Greiner)

Also refer to: Monnai, Hirano, Nucl. Phys. A847:283-314 (2010) or Kikuchi et al. PRC 92, 064909 (2015)

$$\begin{split} \tau_\Pi \dot{\Pi} + \Pi &= -\zeta \theta + \mathcal{O}(2) [\Pi, V_q^\mu, \pi^{\mu\nu}, \theta, \sigma^{\mu\nu}, \nabla^\mu P_0, \nabla \alpha_q] \\ \sum_{q'} \tau_{qq'} \dot{V}_{q'}^{\langle \mu \rangle} + V_q^\mu &= \sum_{q'} \kappa_{qq'} \nabla^\mu \alpha_{q'} + \mathcal{O}(2) [\Pi, V_q^\mu, \pi^{\mu\nu}, \theta, \sigma^{\mu\nu}, \omega^{\mu\nu}, \nabla^\mu P_0, \nabla \alpha_q] \\ \tau_\pi \dot{\pi}^{\langle \mu \nu \rangle} + \pi^{\mu\nu} &= 2\eta \sigma^{\mu\nu} + \mathcal{O}(2) [\Pi, V_q^\mu, \pi^{\mu\nu}, \theta, \sigma^{\mu\nu}, \omega^{\mu\nu}, \nabla^\mu P_0, \nabla \alpha_q] \end{split}$$

Deriving fluid dynamics from kinetic theory

Denicol et al., PRD 85, 114047 (2012)

On basis of **DNMR** theory: derivation from the Boltzmann equation

→ **upcoming publication!** (Fotakis, Molnár, Niemi, Denicol, Rischke, Greiner)

Also refer to: Monnai, Hirano, Nucl. Phys. A847:283-314 (2010) or Kikuchi et al. PRC 92, 064909 (2015)

relativistic Boltzmann eq.
$$k_i^\mu \partial_\mu f_{i,\mathbf{k}} = \sum_j \mathcal{C}_{ij}[f_i,f_j] \qquad \qquad \qquad \qquad \qquad \qquad \dot{\Pi}, \ \dot{V}_q^{\langle\mu\rangle}, \ \dot{\pi}^{\langle\mu\nu\rangle}$$

$$\begin{split} \tau_\Pi \dot{\Pi} + \Pi = \boxed{-\zeta\theta} + \boxed{\mathcal{O}(2)[\Pi, V_q^\mu, \pi^{\mu\nu}, \theta, \sigma^{\mu\nu}, \nabla^\mu P_0, \nabla\alpha_q]} \\ \sum_{q'} \tau_{qq'} \dot{V}_{q'}^{\langle\mu\rangle} + V_q^\mu = \boxed{\sum_{q'} \kappa_{qq'} \nabla^\mu \alpha_{q'}} + \boxed{\mathcal{O}(2)[\Pi, V_q^\mu, \pi^{\mu\nu}, \theta, \sigma^{\mu\nu}, \omega^{\mu\nu}, \nabla^\mu P_0, \nabla\alpha_q]} \\ \tau_\pi \dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = \boxed{2\eta\sigma^{\mu\nu}} + \boxed{\mathcal{O}(2)[\Pi, V_q^\mu, \pi^{\mu\nu}, \theta, \sigma^{\mu\nu}, \omega^{\mu\nu}, \nabla^\mu P_0, \nabla\alpha_q]} \end{split}$$

1st order terms (Navier-Stokes): mixed chemistry already couples diffusion currents!

- 2nd order terms: couples all currents to each other; depend on all gradients!
- \rightarrow 3 conserved charges: 70+ transport coefficients (!!) with (T, μ_B, μ_Q, μ_S) -dependence

Greif, Fotakis et al., PRL 120, 242301 (2018) Fotakis, Greif et al., PRD 101, 076007 (2020)

- Investigate longitudinal evolution in Milne coordinates (transversally homogeneous)
- Conserved baryon number and strangeness, <u>neglect viscosity</u>, neglect 2nd order terms

$$\tau_{\Pi}\dot{\Pi} + \Pi = -\zeta\theta + \mathcal{O}(2) \quad \tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} + \mathcal{O}(2) \quad \sum_{q'} \tau_{qq'}\dot{V}_{q'}^{\langle\mu\rangle} + V_q^{\mu} = \sum_{q'} \kappa_{qq'} \nabla^{\mu}\alpha_{q'} + \mathcal{O}(2)$$

Only 3 transport coefficients left!

Greif, Fotakis et al., PRL 120, 242301 (2018) Fotakis, Greif et al., PRD 101, 076007 (2020)

- Investigate longitudinal evolution in Milne coordinates (transversally homogeneous)
- Conserved baryon number and strangeness, <u>neglect viscosity</u>, neglect 2nd order terms
- **Equation of state:** Non-interacting, classical statistics, Hadronic system with 19 lightest (stable) particle species

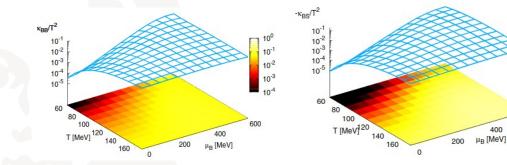
$$\begin{array}{c} \sum_{q'} \tau_{qq'} \dot{V}_{q'}^{\langle \mu \rangle} + V_q^{\mu} = \sum_{q'} \kappa_{qq'} \nabla^{\mu} \alpha_{q'} \\ \text{Only 3 transport coefficients left!} \end{array}$$

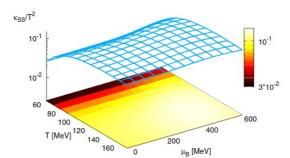
Greif, Fotakis et al., PRL 120, 242301 (2018) Fotakis, Greif et al., PRD 101, 076007 (2020)

- Investigate longitudinal evolution in Milne coordinates (transversally homogeneous)
- Conserved baryon number and strangeness, <u>neglect viscosity</u>, neglect 2nd order terms
- **Equation of state:** Non-interacting, classical statistics, Hadronic system with 19 lightest (stable) particle species

$$\begin{array}{c} \sum_{q'} \tau_{qq'} \dot{V}_{q'}^{\langle \mu \rangle} + V_q^{\mu} = \sum_{q'} \kappa_{qq'} \nabla^{\mu} \alpha_{q'} \\ \text{Only 3 transport coefficients left!} \end{array}$$

- Diffusion coefficient matrix:
 - Computed from linearized relativistic Boltzmann equation
 - Assumed elastic, isotropic, binary cross sections from PDG, SMASH, GiBUU and UrQMD



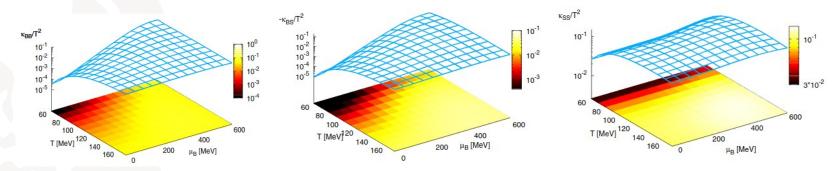


Greif, Fotakis et al., PRL 120, 242301 (2018) Fotakis, Greif et al., PRD 101, 076007 (2020)

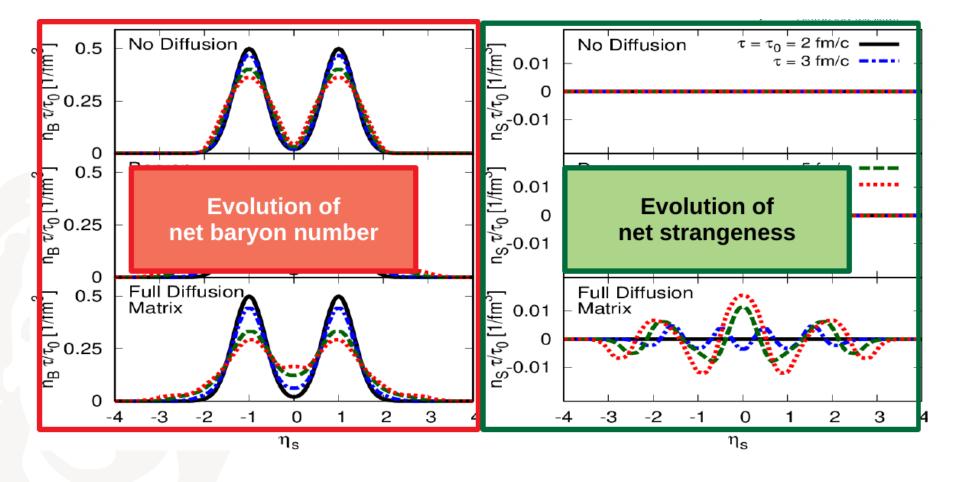
- Investigate longitudinal evolution in Milne coordinates (transversally homogeneous)
- Conserved baryon number and strangeness, <u>neglect viscosity</u>, neglect 2nd order terms
- Equation of state: Non-interacting, classical statistics, Hadronic system with 19 lightest (stable) particle species

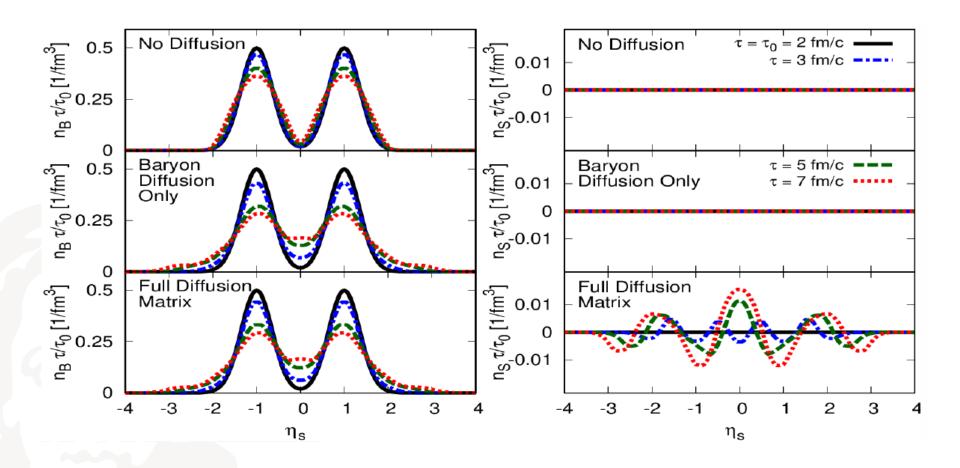
$$\sum_{q'} \tau_{qq'} \dot{V}_{q'}^{\langle \mu \rangle} + V_q^{\mu} = \sum_{q'} \kappa_{qq'} \nabla^{\mu} \alpha_{q'}$$
 Only 3 transport coefficients left!

- Diffusion coefficient matrix:
 - Computed from linearized relativistic Boltzmann equation
 - Assumed elastic, isotropic, binary cross sections from PDG, SMASH, GiBUU and UrQMD



• **Simple initial state:** T = 160 MeV, no initial net strangeness, longitudinal double-gaussian profile in net baryon number, no initital dissipative currents





Mixed chemistry couples diffusion currents

Generation of domains of non-vanishing local net charge (here net strangeness)!

Outlook

- Implement derived fluid dynamic theory in existing (3+1)D-hydro code
- Evaluate 2nd order transport coefficients from linearized Boltzmann equation
- Use more realistic initial state and equation of state (see above)
- Apply freeze-out routines, take δf -correction from derived theory
- Find observables sensitive to charge-coupling → investigate impact